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Abstract Efficient methods for accurate and meaningful
high-throughput plant phenotyping are limiting the devel-

opment and breeding of stress-tolerant crops. A number of

emerging techniques, specifically remote sensing methods,
have been identified as promising tools for plant pheno-

typing. These remote sensing methods can be used to

accurately and rapidly relate variations in leaf optical
properties with important plant characteristics, such as

chemistry, morphology, and photosynthetic properties at

the leaf and canopy scales. In this study, we explored the
potential to utilize optical (k = 500–2,400 nm) near-sur-

face remote sensing reflectance spectroscopy to evaluate

the effects of ozone pollution on photosynthetic capacity of
soybean (Glycine max Merr.). The research was conducted

at the Soybean Free Air Concentration Enrichment (Soy-

FACE) facility where we subjected plants to ambient
(44 nL L-1) and elevated ozone (79–82 nL L-1 target)

concentrations throughout the growing season. Exposure to

elevated ozone resulted in a significant loss of productivity,
with the ozone-treated plants displaying a *30 % average

decrease in seed yield. From leaf reflectance data, it was

also clear that elevated ozone decreased leaf nitrogen and
chlorophyll content as well as the photochemical reflec-

tance index (PRI), an optical indicator of the epoxidation

state of xanthophyll cycle pigments and thus physiological
status. We assessed the potential to use leaf reflectance

properties and partial least-squares regression (PLSR)

modeling as an alternative, rapid approach to standard gas
exchange for the estimation of the maximum rates of RuBP

carboxylation (Vc,max), an important parameter describing

plant photosynthetic capacity. While we did not find a
significant impact of ozone fumigation on Vc,max, stan-

dardized to a reference temperature of 25 "C, the PLSR

approach provided accurate and precise estimates of Vc,max

across ambient plots and ozone treatments (r2 = 0.88 and

RMSE = 13.4 lmol m-2 s-1) based only on the variation

in leaf optical properties and despite significant variability
in leaf nutritional status. The results of this study illustrate

the potential for combining the phenotyping methods used

here with high-throughput genotyping methods as a
promising approach for elucidating the basis for ozone

tolerance in sensitive crops.

Keywords Air pollution ! Photochemical reflectance

index ! Photosynthesis ! Remote sensing ! Rubisco !
Spectroscopy

Introduction

A widely recognized bottleneck in the development and

breeding of stress-tolerant crops is accurate and meaningful

high-throughput phenotyping (Furbank and Tester 2011;
Tuberosa 2012). Near-surface remote sensing of leaf opti-

cal properties has been identified as a promising pheno-

typing technique (Montes et al. 2007). By monitoring the

E. A. Ainsworth (&) ! J. A. Skoneczka
Agricultural Research Service, Global Change and
Photosynthesis Research Unit, US Department of Agriculture,
University of Illinois, Urbana-Champaign, 1201 W. Gregory
Drive, Urbana, IL 61801, USA
e-mail: lisa.ainsworth@ars.usda.gov

E. A. Ainsworth
Department of Plant Biology, University of Illinois, Urbana-
Champaign, 1201 W. Gregory Drive, Urbana, IL 61801, USA

S. P. Serbin ! P. A. Townsend
Department of Forest and Wildlife Ecology, University of
Wisconsin-Madison, 226 Russell Labs, 1630 Linden Drive,
Madison, WI 53706, USA

123

Photosynth Res (2014) 119:65–76

DOI 10.1007/s11120-013-9837-y



spectral reflectance of a leaf or plant canopy, a number of

physiological traits can be inferred by correlation with leaf
optical properties (Curran 1989; Kokaly et al. 2009; Asner

et al. 2011; Ollinger 2011). Measurements of leaf optical

properties are non-destructive and rapid, taking only a few
seconds, and therefore can be done in the field on a large

number of individual plants. Simple spectral reflectance

indices based on the ratio of reflected light in the near-
infrared (NIR, 700–1,300 nm) to visible wavelengths (Vis,

400–700 nm) have been developed to predict vegetative
parameters such as green biomass, leaf area index (LAI,

m2 m-2, per horizontal datum), and photosynthetic radia-

tion absorption (Myneni and Williams 1994; Gamon et al.
1995; Gitelson et al. 2003). Other more intricate spectral

reflectance indices have been developed to assess radiation

use efficiency and the water status of plant canopies
(Gamon et al. 1992, 1997; Peñuelas et al. 1993, 1995).

Spectral reflectance indices have also been demonstrated to

be effective in application as breeding tools or to identify
nutrient or water stressed crops (e.g., Osborne et al. 2002;

Babar et al. 2006).

Recently, novel statistical methods have been developed
to determine photosynthetic properties of leaves from

reflectance information in the Vis, NIR, and short-wave

infrared (SWIR, 1,300–2,500 nm) spectral regions. In
particular, partial least-squares regression (PLSR) methods

allow empirical estimation of parameters that are mecha-

nistically linked to the biochemistry of carbon assimilation,
specifically the maximum carboxylation rate of ribulose

bisphosphate (RuBP) carboxylation by Rubisco (Vc,max)

and the maximum rate of RuBP regeneration (Jmax;
Doughty et al. 2011; Serbin et al. 2012). These two leaf

traits (Vc,max and Jmax) largely determine the photosyn-

thetic performance of a leaf, and are used in a widely
adopted and validated biochemical model of photosynthe-

sis (Farquhar et al. 1980; Farquhar and von Caemmerer

1982), which has been scaled to the canopy and ecosystem
levels (e.g., Chen et al. 1999; Baldocchi and Wilson 2001;

Medvigy et al. 2009). The use of spectral measurements to

estimate these metabolic properties has opened a wide
range of applications for rapid characterization of plant

properties. The combination of such phenotyping methods

with high-throughput genotyping offers a promising
approach for elucidation of the underlying genetic basis of

complex plant traits related to photosynthetic production

(Montes et al. 2007).
Ozone is a dynamic secondary pollutant, which enters

leaves through the stomata, generates other reactive oxygen

species and causes oxidative stress (Fiscus et al. 2005). This
damage in turn decreases photosynthesis, plant growth,

biomass accumulation, and crop yield (Fuhrer et al. 1997;

Fumigalli et al. 2001; Ashmore 2005; Fiscus et al. 2005;
Ainsworth et al. 2012), with cumulative exposure to

concentrations over 40 nL L-1 causing linear decreases in

crop production (Fuhrer et al. 1997; Mills et al. 2007;
Betzelberger et al. 2012). Current concentrations of ozone

cause wide-spread visual damage to leaves of natural and

managed species (Mills et al. 2011). However, even in the
absence of visual symptoms, ozone can decrease rates of

photosynthesis (Biswas et al. 2008). In such cases, the loss

of Rubisco activity is thought to be the primary cause of
decreased carbon assimilation (Farage and Long 1999).

Although the impact of ozone damage on crops is sub-
stantial, with global estimates of lost profit between $14 and

$26 billion (Van Dingenen et al. 2009), large-scale breeding

or biotechnological efforts to improve ozone tolerance in
sensitive crops have yet to be initiated in the industrial

sector (Ainsworth et al. 2008). This is in part because ozone

is a dynamic air pollutant, with variable concentrations
from day to day, season to season, and year to year, but also

because of the difficulty in screening germplasm for ozone

tolerance. Foliar injury has been used to assess ozone tol-
erance in crops (Heagle and Letchworth 1982; Burkey and

Carter 2009); however, injury from ozone that ultimately

decreases productivity is not always visible on leaves, and
therefore developing other methods of screening is an

important first step toward selecting for ozone tolerance.

Previous studies have used remotely sensed indices to
monitor the effects of ozone (reviewed by Meroni et al.

2009), and have shown that changes in photochemical

reflective index (PRI, Gamon et al. 1992; 1997) in plants
exposed to elevated ozone precede visual damage to leaves.

PRI provides an indication of de-epoxidation of the xan-

thophyll pigments, hence diversion of energy to nonphoto-
chemical quenching (NPQ), and is strongly correlated with

light-use efficiency (Gamon et al. 1997; Grace et al. 2007;

Coops et al. 2010). The decrease in PRI in plants exposed to
elevated ozone indicates increased NPQ and an increase in

the de-epoxidation state of the xanthophylls pool, which has

been supported by biochemical analyses (Castagna et al.
2001; Ranieri et al. 2001). Previous analyses of the spectral

properties of soybean leaves (Campbell et al. 2007) and

canopies (Gray et al. 2010) have also indicated that PRI is a
promising index for assessing ozone sensitivity.

In this study, we examined the potential to use leaf

reflectance data, spectral indices and hyperspectral mod-
eling to assess ozone damage to photosynthesis in 11

diverse genotypes of soybean (Glycine max Merr.; Table 1)

grown in the field under open-air conditions. We chose
soybean because it is particularly sensitive to ozone (Mills

et al. 2007; Betzelberger et al. 2012) and because the

photosynthetic and growth response of soybean to elevated
ozone concentrations has been examined in detail.

According to a recent compilation of crop response studies

using the metric accumulated exposure over a threshold of
40 nL L-1 (AOT40), the critical level for damage to
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soybean or the level which causes a 5 % reduction in yield,

is 4.3 ppm h over 3 months (Mills et al. 2007). This con-

centration is regularly exceeded today in many soybean-
growing regions, including the Midwest U.S. Previous

research has shown that while the maximum potential

photosynthetic capacity was not consistently altered by a
25–50 % increase in ozone concentration, ozone acceler-

ated the process of senescence leading to decreased pho-

tosynthetic capacity in aging leaves and canopies (Morgan
et al. 2004; Betzelberger et al. 2010). In the current study,

we also tested whether leaf reflectance spectra could be

used to accurately predict Vc,max in soybean exposed to
ambient and elevated ozone concentrations. While infrared

gas exchange analysis is commonly used to accurately

estimate Vc,max (Long and Bernacchi 2003), measurements
are time and labor-intensive and ill-suited to large-scale

screening. Therefore, development of techniques to esti-

mate Vc,max from spectral data may be particularly useful
for screening for ozone or other stress tolerance.

Materials and methods

Experimental site

Soybeans were exposed to elevated ozone concentrations at

the Soybean Free Air Concentration Enrichment (SoyFACE)
facility located on 32 ha near Champaign, IL, USA

(40"020N, 88"140W, 228 m above sea level; http://www.igb.

illinois.edu/soyface/). Detailed descriptions of the facility
have been published previously (Rogers et al. 2004; Morgan

et al. 2004; Betzelberger et al. 2010). In 2011, the ozone

experiment consisted of eight ambient and eight elevated
20-m diameter octagonal plots. Plots were fumigated with air

enriched with ozone (100 nL L-1 target) from 9:00 to 17:00,
except when leaves were wet or there was insufficient wind

for accurate fumigation. The ambient 8 h ozone concentra-

tion over the 2011 growing season was 44 nL L-1, and the
8 h average concentration in the FACE plots ranged from 79

to 82 nL L-1 (Fig. 1). One-minute average concentrations

were within 20 % of the 100 nL L-1 target for 88–93 % of
the time.

Eleven soybean genotypes were investigated in this study

(Table 1). Two genotypes, Dwight and Pana, were planted in
ambient and elevated ozone plots in a replicated design

(N = 8). Genotypes were planted in two row plots, 1.5 m
long, with 0.76 m row spacing. Nine additional genotypes,

A.K. (Harrow), Cumberland, Dunfield, Jogun, Lincoln, Pella,

PI 88788, Richland, and Williams 82, were planted in three
elevated ozone plots (N = 3) in similar 1.5 m double row plots

(0.76 m row spacing). Ambient plots for these nine genotypes

were planted in plots of four 2.43 m rows with 0.76 m row
spacing (N = 1). The ambient plots were located in the field

[100 m from the FACE plots to avoid cross-fumigation.

Leaf gas exchange

The response of photosynthesis (A) to intercellular CO2

concentration (ci) was measured in the field with a portable

infrared gas analyzer (LI-6400, Li-Cor Biosciences, Lin-

coln, NE, USA) on two soybean genotypes, Pana and
Dwight. These genotypes were used because they have

been previously shown to have different sensitivities to

ozone (Betzelberger et al. 2010). Gas exchange measure-
ments were performed from 17 to 21 Aug 2011. Gas

exchange was measured on a mature leaf at the top of the

canopy at saturating light (2,000 lmol m-2 s-1). Mea-
surements were initiated at the growth CO2 concentration

(400 lmol mol-1). Next, the reference CO2 concentration

was reduced stepwise to a lower concentration of
50 lmol mol-1. Photosynthesis was measured at five CO2

concentrations in order to provide the initial slope of the A/

ci response. Each stepwise measurement was completed
within 1 or 2 min in order to minimize alteration of the

activation state of Rubisco. Leaf temperature was measured

with an infrared thermometer (Agri-Therm III, Everest
Interscience, Tucson, AZ, USA) before the A/ci curve was

initiated and the block temperature was set to keep constant

cuvette temperature for the subsequent measurements. Gas
exchange measurements were acquired from 3 to 6 leaves

per genotype from each of 4 ambient and 4 elevated ozone

plots (59 A/ci curves measured in total).

Calculation of Vc,max from gas exchange measurements

Estimates of Vc,max and dark respiration (Rd) were calcu-

lated by fitting the equations of Farquhar et al. (1980). We

calculated the optimum Vc,max for each measured A/ci

curve using the derivative evolution (DE) algorithm (Price

Table 1 List and description of soybean genotypes used in the study

Genotype Release
date

Maturity
group

Pedigree

A.K. (Harrow) 1950 III Selected by A.K.

Cumberland 1977 III Corsoy 9 Williams

Dunfield 1954 III Selected from PI 36846

Dwight 1997 II Jack 9 A86-303014

Jogun 1951 III Selected from PI 87615

Lincoln 1954 III Mandarin 9 Manchu

Pana 1997 III Jack 9 Asgrow A3205

Pella 1979 III L66L-137 9 Calland

PI 88788 1930 III

Richland 1954 II Selected from PI 70502

Williams 82 1980 III Williams (7) 9 Kingwa

Photosynth Res (2014) 119:65–76 67

123

http://www.igb.illinois.edu/soyface/
http://www.igb.illinois.edu/soyface/


et al. 2006) implemented in the R (R Development Core

Team, 2008) package ‘‘DEoptim’’ (Ardia 2009) to mini-
mize the difference between the modeled and observed

photosynthetic rates to derive the optimum Vc,max and Rd

for each A/ci curve. Michaelis–Menten constants for CO2

(Kc) and oxygen (Ko), as well as the photosynthetic (CO2)

compensation point (C*) were derived using the tempera-

ture-dependent formulae of Bernacchi et al. (2001). Our
parameter optimization strategy was implemented to avoid

the co-limited region of the A/ci curve, and Vc,max was

estimated from data where ci \ 250 mmol mol-1.
We quantified the temperature dependence of Vc,max

using a modified Arrhenius model (Medlyn et al. 2002;

Dillaway and Kruger 2010):

VTl
¼ V25e

Ev
Rg

1
T25
# 1

Tl

! "h i

where V25 is the Vc,max at the reference temperature of 25 "C,

T25 and Tl are temperatures in Kelvin, VTl is the Vc,max at the

measured temperature Tl, Ev is the energy of activation for
RuBP carboxylation, and Rg is the ideal gas constant

(8.314 J mol-1 K-1). Based on the Vc,max values calculated

at three to five leaf temperatures, we determined V25 and Ev

using the ‘‘DEoptim’’ parameter optimization algorithm in

R. For the samples included in this study, we did not observe

a peaked response of Vc,max temperature (Medlyn et al. 2002;
Kattge and Knorr 2007); therefore, all temperature respon-

ses are based on the Arrhenius model described above.

Estimates from individual leaves were averaged for each
plot (N = 4), and statistical differences between genotypes

and ozone treatments were calculated based on plot mean.

Leaf optical properties

Soybean leaves were analyzed for their shortwave

(350–2,500 nm) reflectance properties using a high-spectral-

resolution ASD FieldSpec# Full-Range spectroradiometer

(Analytical Spectral Devices, Boulder, CO, USA). Mea-
surements were made within 30 min of the 59 gas exchange

measurements made on the Pana and Dwight genotypes. In

addition, spectral measurements were made on 108 plants
from the other 9 genotypes (Table 1). Our objective was to

calibrate the spectral models using Pana and Dwight, and

apply the resulting models to spectral measurements from the
remaining genotypes. Genotype is not in and of itself a unit of

replication or analysis in this study and data from all geno-

types were pooled for most analyses. All measurements were
made on the leaf adaxial surface using a leaf-clip assembly

attached to a plant probe with an internal, calibrated light

source. The relative reflectance of each leaf was determined
from the measurement of leaf radiance divided by the radi-

ance of a 92.5–99.5 % reflective white standard (Spectralon,1

Labsphere Inc., North Dutton, NH, USA), measured every
3rd spectral collection. Each leaf reflectance measurement

required less than 5 s. Prior to each spectral measurement we

measured leaf temperature on the leaf adaxial side using an
infrared thermometer (Agri-Therm III, Everest Interscience,

Inc., Tucson, AZ). Three leaves per genotype per treatment

were measured, and the average spectral data of three leaves
were then used for statistical analysis. For leaves with a paired

gas exchange measurement, the collection of reflectance and

gas exchange were separated by no more than 15–30 min.
Based on 1-nm bandwidths interpolated from the

spectroradiometer data, we calculated PRI according to

Gamon et al. (1997):

PRI ¼ R531 # R570

R531 þ R570
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Fig. 1 Ozone concentrations
measured between 9:00 to 17:00
(8 h [O3]) in the elevated ozone
plots and in the ambient air at
SoyFACE during the 2011
growing season. The 8 h target
concentration (100 nL L-1) was
attained regularly throughout
the season. We did not fumigate
on rainy days or days with
insufficient wind speed, and so
the season-long 8 h ozone
concentration in the elevated
ozone plots was 81 nL L-1 and
the ambient ozone concentration
was 44 nL L-1

1 http://www.labsphere.com/products/reflectance-standards-and-
targets/reflectance-targets/spectralon-targets.aspx.
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where R is reflectance and subscripts refer to wavelengths

in nm. In order to avoid negative values of PRI, values

were scaled as (Letts et al. 2008):

sPRI ¼ PRI þ 1

2

Chlorophyll index (CI) was calculated according to

Gitelson and Merzlyak (1994) as:

CI ¼ R750 # R705

R750 þ R705

and total chlorophyll content (total chl; lg cm-2) was

estimated from CI following Richardson et al. (2002).
In addition the spectral vegetation indices (SVIs) above,

we calculated leaf nitrogen concentration (%) and leaf

mass per area (LMA, g m-2 dry weight) on all sample
leaves based on spectroscopic models presented in Serbin

et al. (2012) and Serbin (2012).

Modeling leaf metabolism using reflectance

spectroscopy

We modeled the variation in leaf metabolism, based on

coincident variation in optical properties, using a partial

least-squares regression (PLSR) modeling approach (Wold
et al. 1984; Geladi and Kowalski 1986; Asner et al. 2011;

Serbin et al. 2012). The PLSR approach is useful in remote

sensing research, particularly leaf spectroscopy, because it
facilitates relating a full reflectance spectrum to a response

variable of interest, in this case Vc,max. To avoid potential

overfitting during the PLSR modeling step, we optimized the
number of PLSR model components by minimizing the

prediction residual sum of squares (PRESS) statistic (Chen

et al. 2004). We calculated the PRESS statistic for successive
components through an iterative leave-one-out cross-vali-

dation (LOO-CV) procedure. Once minimized, we then used

the corresponding number of components in the final Vc,max

model (Wold et al. 2001; Asner et al. 2011; Serbin et al.

2012). This model was then used to estimate Vc,max on the

remaining leaf samples using the original spectral data. The
validation statistics were used to determine the precision and

accuracy of the estimates from spectroscopy, where the

coefficient of determination (r2) was used to assess the pre-
cision of the PLSR model and the residual between cali-

bration and LOO-CV prediction values (root mean square

error, RMSE) provides an assessment of model performance
(Serbin et al. 2012). The final Vc,max model was then applied

to spectra collected from genotypes that did not have con-

current gas exchange measurements.

Statistical analysis

The effect of ozone on spectral properties and soybean seed

yield was analyzed by ANOVA (PROC GLM; SAS 9.2,

SAS Institute, Cary, NC) and differences between ambient

and elevated ozone were considered significant at p \ 0.10.
Plot mean were used for ANOVA and correlations among

parameters. Relationships between spectral indices and

estimated leaf biochemical properties and seed yield was
assessed by linear regression (PROC REG; SAS 9.2, SAS

Institute) using data from all eleven genotypes.

Results

Estimating Vc,max from leaf reflectance spectra

Leaf optical properties for the youngest, fully expanded

leaf samples used in the PLSR Vc,max modeling varied

significantly within and across the ozone treatments as well
as the two genotypes of soybean, Dwight and Pana (Fig. 2).

We observed the largest range in reflectance in the near-

infrared region (NIR, 750–1,300 nm), however, the coef-
ficient of variation (CV) of reflectance (Fig. 2b) was largest

in the visible (VIS, 450–750 nm), followed by the short-

wave infrared (SWIR, 1,500–2,500 nm) spectral regions.
During the experiment, leaf temperatures ranged from

25 to 34 "C and Vc,max varied from a minimum of 81 to a

maximum value of 264 lmol m-2 s-1 for the two geno-
types used within the PLSR calibration data (Fig. 3). Vc,max

displayed a typical temperature sensitivity and the response

to temperature was well described by an Arrhenius rela-
tionship (Fig. 3c), resulting in an activation energy near

80 kJ mol-1. The values of Vc,max, standardized to a ref-

erence temperature of 25 "C (Vc,max
25 ), ranged from a min-

imum of 76.3 lmol m-2 s-1 to a peak value of

136.1 lmol m-2 s-1, and there was no significant effect of

O3 (p = 0.154) or cultivar (p = 0.901) on the values of
Vc,max

25 .

Despite the variation in Vc,max we observed across the

ambient plots and ozone treatments, as well as genotypes,
our PLSR model, which was based on leaf reflectance, was

able to estimate Vc,max with high accuracy and precision

(Fig. 3a, b). The final model did not contain a significant
bias and the root mean square error (RMSE) was within

9.4 % of the mean Vc,max. We did not observe any signif-

icant trends in the residuals with leaf temperature or
nitrogen content (product of nitrogen concentration and

leaf mass per area, g m-2), which displayed an almost a

twofold variation across samples. The PLSR model coef-
ficients (Fig. 2c) showed that the contribution of reflec-

tance to the prediction of Vc,max varied considerably across

the spectrum. Strong loadings were observed in the visible
spectrum near the chlorophyll absorption features

(640–670 nm) and the shoulders of the green reflectance

peak (*550 nm), as well as the around red-edge
(*750 nm) region. In the SWIR, we found large model
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coefficients (thus strong loadings) near the shoulders of the

strong water absorption features (*1,400 and 1,900 nm) as
well as near 1,700 and 2,200 nm.

Ozone alters leaf spectral properties and seed yield

Across all soybean genotypes, there was a significant effect

of elevated ozone concentrations (*80 ppb) on soybean
leaf properties as measured using spectroscopy (Fig. 4).

Leaf N concentration decreased from 3.1 to 2.9 % and total
chlorophyll content also decreased from 40 to 37 lg cm-2.

sPRI, an indication of the epoxidation state of xanthophyll

pigments, was significantly decreased by elevated ozone
(Fig. 4). Contrary to our expectation, leaf level Vc,max was

unaffected at elevated ozone (Fig. 4). Ozone had a signif-

icant detrimental effect on seed yield, reducing production
on average by *30 % (Fig. 4).

Relationship between spectral properties and seed yield

There was a significant, positive correlation between leaf

N, chlorophyll content, sPRI and seed yield (Fig. 5;
Table 2). All three of the leaf level traits were also highly

correlated with each another, especially leaf N and total

chlorophyll content (Table 2). There was no significant
relationship between Vc,max and seed yield (Fig. 5;

Table 2), and Vc,max estimated from spectral data was also

not correlated with sPRI or chlorophyll content, suggesting
that ozone had differential effects on light harvesting and

carbon assimilation.

Discussion

We exposed 11 soybean genotypes to ambient and elevated

concentrations of ozone in the field under standard agro-

nomic conditions. Exposure to elevated ozone decreased
seed yield by *30 % on average and also impacted leaf

level traits assessed from spectral optical properties. Leaf

nitrogen, total chlorophyll content, and sPRI were all sig-
nificantly lower in plants exposed to elevated ozone

(Fig. 3). A change in the spectral characteristics of plants

exposed to elevated ozone has been previously documented
(Williams and Ashenden 1992; Rudorff et al. 1996;

Campbell et al. 2007; Meroni et al. 2009), and the decrease

in PRI with exposure to elevated ozone is consistent with
previous studies of soybeans (Gray et al. 2010). In our

study, reduced values of PRI indicate the increased pro-

tective dissipation of excess energy as a response to ele-
vated ozone concentrations by sensitive plants (Guidi et al.

1997; Carrasco-Rodriguez and del Valle-Tascon 2001).

Fig. 2 Mean, ±one standard deviation, and range in leaf reflectance
for the 59 observations (28 Dwight, 31 Pana) with concurrent leaf gas
exchange measurements (a). Spectral coefficient of variation (CV) of
leaf reflectance (b) and the Vc,max PLSR model coefficients by
wavelength (c) for the same 61 samples
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The decrease in chlorophyll and nitrogen content at ele-

vated ozone is also consistent with previous studies (Reid
et al. 1998; Shrestha and Grantz 2005) and consistent with

decreased leaf absorptance measured at SoyFACE (Bet-

zelberger et al. 2012). While another previous study at
SoyFACE did not find a significant effect of elevated ozone

(82.5 ppb) on chlorophyll content, it did report transcrip-

tional evidence for increased turnover of chlorophyll
(Gillepsie et al. 2012).

We assessed the potential for using spectral data to
estimate Vc,max in soybean plants exposed to elevated

ozone. Our PLSR modeling approach was previously

developed to estimate photosynthetic metabolism in trem-
bling aspen (Populus tremuloides) and eastern cottonwood

(Populus deltoides; Serbin et al. 2012), which we have now

extended across diverse genotypes of soybean. Our PLSR
model provided very accurate estimates of Vc,max (Fig. 3a),

based on the strong relationship between leaf metabolism

and variations in leaf optical properties across the Vis–
NIR–SWIR spectral region (Fig. 2). Only a few studies

have explored the potential to estimate photosynthetic

capacity, expressed as Vc,max, using leaf optical properties
(Wang et al. 2008; Doughty et al. 2011; Dillen et al. 2012;

Serbin et al. 2012), and to our knowledge no others have

explored this potential on environmentally stressed plants.
Importantly, the relationship between leaf reflectance and

Vc,max was strong despite the large variation in leaf mor-

phology, chemistry, measurement temperature, and envi-
ronmental stress, as well as across genotypes of soybean. In

addition, the spectral regions of high importance to the

prediction of Vc,max (i.e., large model coefficients, Fig. 2c)
align closely with those shown in our previous work

(Serbin et al. 2012) and generally lie within the pigment

absorption features, as well as those related to foliar
nitrogen, structure, and Rubisco absorption (Curran 1989;

Elvidge 1990; Kokaly et al. 2009; Ustin et al. 2009). Dillen

et al. (2012) also found that the red-edge region of a leaf
spectrum (*750 nm) was a good predictor of Vc,max, but

found accuracies lower than those shown here or in Serbin

et al. (2012). This is likely due to the differences in leaf
temperature during gas exchange and spectral measure-

ments, which we have found to be necessary to accurately

relate leaf optical properties to leaf metabolism.
We did not detect an effect of ozone on Vc,max in this

study (Fig. 4). This was unexpected given the ozone-

induced decreases in leaf N percentage, chlorophyll con-
tent, and sPRI. However, the season-long average ozone

concentration in the ambient air was 44 nL L-1

(AOT40 = 4.92 ppm h), which exceeds the minimum
threshold for damage in soybean (Mills et al. 2007). While

we cannot rule out that ambient ozone concentrations

caused reductions in potential Vc,max, we did expect to see a
greater decrease in Vc,max in the elevated ozone plots.

Fig. 3 Observed versus PLSR predicted Vc,max (a) and corresponding
model residuals (b) for the 61 samples across the Dwight and Pana
cultivars. Observed Vc,max values were adjusted prior to model fitting
to match the temperature of each leaf during spectral correction using
an Arrhenius temperature response function (c) derived from the leaf
gas exchange samples
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However, previous studies of soybean and wheat exposed

to elevated ozone concentration in field conditions have

demonstrated that declines in Vc,max in ozone-exposed
leaves are coincident with late-season acceleration in

senescence (Morgan et al. 2004; Feng et al. 2011). In

previous studies, decreases in Vc,max in soybean plants
exposed to elevated ozone were only apparent late in the

growing season when leaves were *25–30 days old
(Morgan et al. 2004). In this study, we may not have

sampled leaves at a time when changes in Vc,max would be

expected. Morgan et al. (2004) also reported a significant

decrease in photochemical quenching of soybean leaves

that preceded changes in Vc,max and photosynthetic CO2

assimilation. Therefore, we believe it possible that under

chronic ozone exposure, changes to the light harvesting

complexes and thermal dissipation of energy precede
changes to Rubisco (i.e., Vc,max), although this is the

opposite of the sequence of events following acute ozone
exposure documented in other species (Farage et al. 1991).

Certainly more frequent spectral characterization of both
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Table 2 Correlation matrix (Pearson correlation coefficient—r, statistical significance—p) of leaf properties derived from spectral data and
seed yield measured on 11 cultivars of soybean exposed to ambient and elevated ozone. N = 68. See text for abbreviations

Vc,max sPRI Total Chl Yield

Leaf N (%) 0.1060, 0.1520 0.5348, \0.0001 0.8864, \0.0001 0.6718, \0.0001

Vc,max -0.0489, 0.6228 0.0376, 0.6117 0.1125, 0.3609

sPRI 0.5465, \0.0001 0.5444, \0.0001

Total Chl 0.5928, \0.0001
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Vc,max over the course of the growing season would

improve understanding of the timing of ozone effects on
different photosynthetic processes, as well as other envi-

ronmental stressors. Other measurements, for example of

Jmax, the maximum electron transport capacity for the
regeneration of RuBP, may further elucidate the temporal

patterns of response of soybean to elevated ozone.

In the current study, leaf N content, total chlorophyll
content, and sPRI were significantly correlated to soybean

yield and yield loss to ozone (Fig. 5), supporting the use

leaf reflectance measurements for screening for ozone
tolerance in a larger collection of soybean germplasm.

Although genetic variation in ozone tolerance has been

reported in soybean (Betzelberger et al. 2010; Burkey and
Carter 2009), snap bean (Flowers et al. 2007), rice (Frei

et al. 2008, 2010), and wheat (Picchi et al. 2010), there has

been little effort in industry to begin to breed crops for
ozone tolerance (Ainsworth et al. 2008; Booker et al.

2009). This may be in part because ozone is a dynamic

pollutant, and not always present in the growing environ-
ment. It is also because it has been difficult to identify

consistent physiological markers of ozone tolerance.

Remote or near-remote sensing of leaf optical properties is

a very promising, rapid phenotyping technique as a number
of physiological traits can be inferred by correlation with

leaf optical properties (Montes et al. 2007; Kokaly et al.

2009; Asner et al. 2011). Here, we show that Vc,max can be
accurately predicted from leaf reflectance spectra, and

although it was not correlated with ozone tolerance at the

time we took our measurements, other inferred leaf prop-
erties were correlated with ozone tolerance, as ultimately

measured by seed yield. Therefore, combining the pheno-

typing methods used here with high-throughput genotyping
methods may be a promising approach for elucidating the

basis for ozone tolerance in sensitive crops.
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